If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t-16t^2-16=0
a = -16; b = 40; c = -16;
Δ = b2-4ac
Δ = 402-4·(-16)·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-24}{2*-16}=\frac{-64}{-32} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+24}{2*-16}=\frac{-16}{-32} =1/2 $
| 5a^2+22a-48=0 | | 3.15(x)=255.5 | | d=62*2.15 | | 11y-2=15 | | H=x-40000 | | .x-4=1 | | 4n-40=7(-2n+20) | | /H=x-40000 | | 0.13x+0.03(50,000-x)=6,000 | | 7x/133=15/x | | 5 | | 5 | | 3x+44-x3/77=4 | | 4(a+7)+12=0 | | x+2=7/8xx-15 | | U=2x+2 | | 2x6−9x5+10x4−3x3+10x2−9x+2=0 | | m²-9=0 | | $27+$6.00x=8.25x | | Y+7=15-x | | 96.2+1.5x=98.5-0.8 | | 0.20(15x-20)=0.50(8x-6) | | 2+5b=3+10b | | 0.5(15x-20)=0.5(8x-6) | | 3+5b=3+10b | | 3(q-5)=21 | | d-712d=19 | | 3x9=45 | | 4+5/(3x)=-1 | | 3{x}^{3}-3{x}^{2}-270x=0 | | X²-2x=28 | | 8x–5=7 |